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We study the spin-state transition and the phase separation involved in this transition based on the multi-
orbital Hubbard model. Multiple spin states are realized by changing the energy separation between two
orbitals and the on-site Hund coupling. By utilizing the variational Monte-Carlo simulation, we analyze the
electronic and magnetic structures in hole doped and undoped states. Electronic phase separation occurs
between the low-spin band insulating state and the high-spin ferromagnetic metallic state. The difference in the
band widths of the two orbitals is of prime importance for the spin-state transition and the phase separation.
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I. INTRODUCTION

Exotic electric and magnetic phenomena observed in cor-
related electron systems are responsible for competition and
cooperation between multielectronic phases with delicate en-
ergy balances. These phenomena arise due to the internal
degrees of freedom of electrons, i.e., spin, charge and orbital,
under strong electron correlation, and their coupling with the
lattice.1,2 In some transition-metal ions, there is an additional
degree of freedom termed the spin-state degree of freedom,
i.e., multiple spin states due to the different electron configu-
rations in a single ion. A prototypical example is the perov-
skite cobaltites R1−xAxCoO3 �R: rare earth ion, A: alkaline
earth ion� where transitions between the multiple spin states
occur by changes in the carrier concentration, temperature
and other parameters. In Co3+ with a d6 configuration, there
are three possible spin states, the high-spin �HS� state �eg

2t2g
4 �

with an amplitude of S=2, the intermediate-spin �IS� state
�eg

1t2g
5 � with S=1, and the low-spin �LS� state �t2g

6 � with S
=0.

Several magnetic, electric, and transport measurements
have been done in insulating and metallic cobaltites. It is
known that LaCoO3 is a nonmagnetic LS band insulator �BI�
at low temperatures, although there is still controversy over
the spin-state transition and the IS state at finite
temperature.3–7 In the high hole doping region of x
�0.3–0.4 in La1−xSrxCoO3, a ferromagnetic �FM� metallic
state was experimentally confirmed. In the lightly hole-
doped region between the LS BI and FM metallic states,
several inhomogeneous features in the magnetic, electric and
lattice structures have been reported experimentally. Spatial
segregation of the hole-rich FM and hole-poor insulating re-
gions have been suggested by neutron diffraction, electron
microscopy, NMR and other studies.8–11 Magnetic–
nonmagnetic clusters have been found by small-angle and
inelastic neutron scattering experiments.12–14 It is widely be-
lieved that the observed giant magnetoresistance effect in the
lightly doped region results from electronic and magnetic
inhomogeneity.12

Electronic phase separation �PS� phenomena in transition-
metal compounds have been studied extensively and inten-
sively, in particular in high-Tc superconducting cuprates and
colossal magnetoresistive manganites.15–20 In these materi-

als, the long-range spin/orbital orders in the Mott insulating
phases and their melting by carrier doping are essential for
the electronic PS. The exchange energy for the localized
spins/orbitals and the kinetic energy of the itinerant electrons
are gained in spatially separate regions. On the contrary, in
the present case, a nonmagnetic BI is realized in the insulat-
ing phase and a spin-state transition is brought about by car-
rier doping. Thus, the present phenomena belong to a new
class of electronic PS in correlated systems, although only a
few theoretical studies have been done to date. In this paper,
we address the issues of the spin-state transition and the PS
associated with this transition by analyzing the multiorbital
Hubbard model. We examine the electronic structures in hole
doped and undoped systems by the variational Monte-Carlo
�VMC� method. We find that the electronic PS is realized
between the nonmagnetic BI and the HS FM metal. We con-
clude that the different band widths play an essential role in
the present electronic PS. In Sec. II, the model Hamiltonian
and the VMC method are introduced. Numerical results and
discussions are presented in Sec. III.

II. MODEL

We have considered a minimal model, the two-orbital
Hubbard model,21–24 to examine the spin-state degrees of
freedom and the transition between them. In each site in a
crystal lattice, we consider two orbitals, termed A and B,
which represent one of the eg and t2g orbitals, respectively.
An anisotropic shape of the orbital wave function is not con-
sidered. The energy difference between the two orbitals is
denoted by ���A−�B�0 where �A and �B are the level
energies for A and B. When the electron number per site is
two, the lowest two electronic states in a single site are �B2�
and �A1B1� which form a spin triplet state, termed the LS and
HS states in the present model, respectively. The explicit
form of the model Hamiltonian is given by

H = ��
i�

ciA�
† ciA� − �

�ij���

t��ci��
† cj�� + H.c.� + U�

i�

ni�↑ni�↓

+ U� �
i���

niA�niB�� − J �
i���

ciA�
† ciB�ciB��

† ciA��

− J��
i�

ci�↑
† ci�̄↑ci�↓

† ci�̄↓, �1�
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where ci�� is the annihilation operator of an electron at site i
in orbital ��=A ,B� and with spin ��=↑ ,↓�, and ni��

�ci��
† ci�� is the number operator. The subscript �̄ takes A or

B, when � is B or A, respectively. We assume that the trans-
fer integral is diagonal with respect to the orbitals and �tA�
� �tB�; both assumptions being justified in perovskite cobal-
tites. In most of the numerical calculations, the relation
tB / tA=1 /4 is chosen. For intra-site electron interactions, we
consider the intra- and interorbital Coulomb interactions, U
and U�, respectively, the Hund coupling J and the pair-
hopping J�. The relations U=U�+2J and J=J� satisfied in an
isolated ion are assumed. In addition, we consider the rela-
tion U=4J in the numerical calculation.

We adopt the VMC method where simulations for a large
cluster size are possible. For simplicity, and to limit com-
puter resource requirements, we use two-dimensional square
lattices with a system size of N�L2�L�8� with periodic and
antiperiodic boundary conditions. The number of electrons is
Ne and the hole concentration per site, measured from Ne
=2N, is denoted as x��2N−Ne� /N. The variational wave
function is given as the product 	=G�
� where G is the
correlation factor and �
� is the one-body wave function.
Two types of wave function are considered in �
�. �1� The
Slater determinant given as

�
N� = �
k

�
�
��

ck��
† �0� , �2�

where ck�� is the Fourier transform of ci��, and �k� is a
product of k up to the Fermi momentum for the bands which
is obtained from the first and second terms in Eq. �1�. �2� The
wave function for the HS antiferromagnetic �AFM� order
given as

�
AF� = �
k

�
�
��

dk��
† dk+K��

† �0� , �3�

where

dk��
† = �k�

�+�ck��
† + ��k�

�−�ck+K��
† , �4�

and

dk+K��
† = − ��k�

�−�ck��
† + �k�

�+�ck+K��
† , �5�

where K= �� ,�� and �k� represents a product of k up to the
Fermi momentum in the first AFM Brillouin zone. We have
↑�↓�=1�−1� and

�k�
��� =

1
	2
	1 �

ek�

	ek�
2 + �AF

2
, �6�

where ek� is the eigenenergy for the first and second terms in
Eq. �1�, and �AF is a variational parameter for the AFM
order. We assume the Gutzwiller-type correlation factor
�il�1−�lPil� where l indicates the local electron configura-
tions, Pil is the projection operator at site i for the configu-
ration l, and �l is the variational parameter. We adopt 10
variational parameters for the 10 different electron configu-
rations at a single site. These are given by �0�, �A��, �B��,
�A�B�̄�, �A�B��, �B↑B↓�, �A↑A↓�, �A�B↑B↓�, �A↑A↓B��,
�A↑A↓B↑B↓� with �=↑ and ↓, where A��B�� implies that the A

�B� orbital is occupied by the � spin electron. The fixed-
sampling method is used to optimize the variational
parameters.25 In addition to the standard VMC method, we
improve the variational wave function by estimating analyti-
cally the weights for the configurations which are sampled
by the Monte Carlo �MC� simulations. This method is valid
for the LS state and reduces the computational time by more
than one order of magnitude. In most of the calculations,
104–105 MC samples are used for measurement.

III. RESULTS AND DISCUSSION

We start from the case at x=0 where the average electron
number per site is two. The electronic states obtained
by the simulation are monitored by the total spin amplitude
defined by S2= �1 /N��i�Si

2�, where Si=��Si�
= �1 /2��ss��ci�s

† �ss�ci�s� is the spin operator with Pauli matri-
ces �, the spin correlation function S��q�
= �4 /N2��ije

iq·�ri−rj��Si�
z Sj�

z �, and the momentum-distribution
function n��k�= �1 /2����ck��

† ck���. We obtain three phases,
the HS-Mott insulator �MI�, the LS-BI and the metallic �ML�
phases. In the HS-MI phase, S2 is about 1.6, being about
80% of the maximum value for S=1. A sharp peak in S��q�
at q= �� ,�� and no discontinuity in n��k� imply that this is
the AFM-MI phase. In the LS-BI phase, nA�k� and nB�k� are
almost zero and one, respectively, for all momenta, and S2


0. In the ML phase, discontinuous jumps are observed in
both nA�k� and nB�k�. The electron and hole Fermi surfaces
are located around k= �0,0� and �� ,�� in the A and B band,
respectively. This is a semimetal. The value of S2 is about
0.3 and no remarkable structure is seen in S��q�. The size
dependences of S2 and S��q� in L=4–8 are within a few
percent in both the HS-MI and ML phases. In the LS-BI
phase, the total energy increases about 0.5 percent by chang-
ing the system size from L=4 to 8.

The phase diagram at x=0 is shown in Fig. 1. The error
bars imply the upper and lower bounds of the phase bound-
ary; symbols are plotted at the center of the bars. The LS-BI
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FIG. 1. �Color online� Phase diagrams at x=0. The ratio of the
electron transfers is taken to be tB / tA=1 /4 in �a� and tB / tA=1 in �b�.
In �b�, the filled squares and open circles show the results obtained
by the VMC method and the previous DMFT method in Ref. 21,
respectively. The broken curves are guides for the eyes. The stars
represent the parameters where the carrier dopings were examined.
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and HS-MI phases are realized in the regions of large � and
J, respectively. The ML phase appears between the regions
of small � and J. To compare the present results with previ-
ous results calculated by the dynamical-mean field theory
�DMFT�,21 in Fig. 1�b�, we present the phase diagram where
the two transfer integrals are chosen to be equal, tB / tA=1.
Although the global features in the phase diagrams are the
same, the HS-MI phase obtained by the VMC method ap-
pears in a broader parameter region than that for DMFT, in
particular, near the boundary of the HS-MI and ML phases.
This is because the AFM long-range order in the HS-MI
phase is treated properly in the VMC method. We have con-
firmed that the phase boundaries obtained by the VMC
method where the AFM order is not considered almost re-
produce the DMFT results.

Now we show the results at finite x. Holes are introduced
into the LS-BI phase near the phase boundary with the pa-
rameter values of �� / tA ,J / tA�= �12.2,4� and �8.25,2.5� �see
Fig. 1�. By changing the one-body wave function �
� and the
initial conditions of the variational parameters in the VMC
simulation, we obtain the following four states: �i� the
LS-ML state where nA�k� is almost zero for all k, and the
Fermi surface is located in the B band around k= �� ,��, �ii�
the FM HS-ML state where nB�k� is about 1/2 in all k, the
Fermi surface is in the A band, and S��q� has a sharp peak at
q= �0,0�, �iii� the AFM HS-ML state where the Fermi sur-
face exists in the A band around k= �� ,0�, and S��q� has a
peak at q= �� ,��, and iv� the mixed state where three kinds
of the on-site electron configurations, �B2�, �A1B1� with S
=1, and �B1�, are distributed spatially.

In Fig. 2�a�, the energy expectation values E��H� for the

several states in �� / tA ,J / tA�= �12.2,4� are plotted as func-
tions of x. The transfer integrals are chosen to be tB / tA
=1 /4. To show the numerical data clearly, we plot E�
= �E / tA�+Cx with a numerical constant C instead of E. This
transformation does not affect the Maxwell’s construction
introduced below. We also analyze the PS state by a
function16 ��x���E�x�−E�x=0�� /x and the obtained results
are consistent in the two methods. The results for the AFM
HS-ML are not plotted, because their energy values are
higher than the others within the energy scale presented in
the figures. In Fig. 3, we present the ratio of the LS sites to
the LS and HS sites in the mixed states defined by RLS
=nLS / �nLS+nHS�. Here, nLS and nHS are the number of sites
where the LS and HS states, respectively, are realized. As
shown in Fig. 2�a�, the LS state, where holes are doped into
the B band, is destabilized monotonically with increasing x.
In the region of x�0.5, the FM HS-ML state is realized. In
between the two regions, the mixed state is the lowest energy
state. The mixed state is smoothly connected to the LS and
HS states in the low and high x regions, respectively. As
shown in Fig. 3, a discontinuous jump in the mixed state is
seen around x=0.25; the system changes from an LS domi-
nant mixed state into an HS dominant state with x. It is
noticeable that the E� versus x curve in the mixed state is
convex in the region of 0�x�0.33. That is, by following
Maxwell’s construction, the PS of the LS-BI and the FM HS
dominant mixed states is more stabilized than the homoge-
neous phase in this region of x. In Fig. 2�b�, we show the
results for �� / tA ,J / tA�= �8.25,2.5� where the system at x
=0 is close to the ML phase �see Fig. 1�a��. The PS appears,
but its region is shrunk.

The magnetization per site in the lowest energy state de-
fined by M�x�= �1 /N���iSi

z� is plotted in Fig. 3. The zero
magnetization at x=0 reflects the LS-BI ground state. In the
high-doped region of x�0.33, the magnetization data almost
follows the relation M�x�
�1+x� /2. The system is expected
to consist of N /2 HS sites, �1 /2−x�N LS sites, and xN
singly-electron occupied sites. In this scheme, we obtain
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FIG. 2. �Color online� Hole concentration dependences of the
energy expectations for several states at �� / tA ,J / tA�= �12.2,4� in
�a�, and at �� / tA ,J / tA�= �8.25,2.5� in �b�. The broken lines are
given by the Maxwell’s construction. The ratio of the electron trans-
fers is taken to be tB / tA=1 /4. The constant parameter C in the
definition of E� is taken to be 16.4 in �a� and 10.5 in �b�.
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FIG. 3. �Color online� Ratio of LS sites to LS and HS sites in
the mixed state, RLS, and magnetization M�x� as functions of the
hole concentration x. The broken line connecting the data at M�x
=0� and M�x=0.33� is drawn by Maxwell’s rule. For comparison,
we plot the M�x�=x /2 curve expected from the hole doping in the
LS-BI phase. The parameters are chosen to be �� / tA ,J / tA�
= �12.2,4� and tB / tA=1 /4.
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RLS= �1−2x� / �2−2x�, which is consistent with the numerical
data of RLS for x�0.33. Between x=0 and 0.33, where the
PS is realized, M�x=0� and M�x=0.33� are connected by a
straight line according to the volume-fraction rule in Max-
well’s construction. The slope of M�x� is about three times
higher than M�x�=x /2, which is expected in the hole doping
in the LS-BI phase. This is qualitatively consistent with the
experimental observations of the magnetization where doped
holes induce high-spin values.3,26

We now address the origin of the electronic PS where the
spin-state degree of freedom is concerned. In Fig. 4, we
present the hole concentration dependence of the energy ex-
pectations where the band widths are set to be equal, tB / tA
=1. The energy parameters are taken to be �� / tA ,J / tA�
= �12.2,4�, which are same with that in the calculation shown
in Fig. 2�a� and are close to the LS-HS phase boundary at
x=0 �see Fig. 1�b��. The mixed state is not obtained in the
simulation. In all regions of x up to x=0.45, the LS state is
the lowest ground state, and neither the spin-state transition
nor the PS occur. The difference of the band widths in the
two orbitals is essential in the electronic PS phenomena.27

Schematic diagrams of the density of states in the LS-BI
at x=0 and the FM HS-ML in a high hole-doped region are
presented in Fig. 5. In the LS-BI state at x=0, the Fermi level
�FL� is located inside the band gap between the A and B
bands. The band width of the A band is larger than that of B.
On the other hand, in the FM HS-ML state, which is realized
for x�0.5 in Fig. 2�a�, the system is a doped MI with FM
spin polarization. The FL is located in the A band. Because
of the large band width of the A band, there is a large kinetic
energy gain in comparison with the doped LS-BI state where
the FL is located in the B band in the rigid band scheme. This
kinetic energy gain is the origin of the spin state transition by
doping. It is shown in Fig. 4 that when equal band widths are
assumed, the E� vs x curves for the LS-ML and FM HS-ML
states are almost parallel and do not cross. This result implies

that there is no difference in the kinetic energy gains for the
two states when the band widths are assumed to be equal.
The present PS phenomena are also attributed to this band
width difference as follows. In the rigid-band sense, by dop-
ing of holes in the LS-BI state, the FL falls into the top of the
B band from the middle of the gap in Fig. 5�a�. If we suppose
that this state is realized in a low x region and is transferred
into the FM HS-ML state shown in Fig. 5�b� with increasing
x, the FL is increased with increasing hole concentration be-
cause of the different band widths. This implies the negative
charge compressibility �=−��� /�x��0 with the chemical
potential �, i.e., the appearance of the electronic PS.

Finally, we discuss the implications for perovskite cobal-
tites. The obtained PS between the insulating nonmagnetic
state and the hole-rich FM state provides an interpretation for
the inhomogeneity observed in a number of experiments.
The PS and the spin-state transition are attributed to the
bandwidth difference of the two bands corresponding to the
eg and t2g bands in the perovskite cobaltites. This electronic
PS is robust under changes in the model parameter values,
except for tB / tA, when the nondoped system is located near
the phase boundary between the LS-BI and HS-MI. Our sce-
nario of the PS based on the bandwidth difference may be
checked experimentally by adjusting the tolerance factor, i.e.,
the Co-O-Co bond angle. A smaller tolerance factor implies a
smaller or larger band width in the eg or t2g orbitals, respec-
tively, and suppression of the PS. Detailed values of x where
the PS is realized and a typical size of the clusters remain
unanswered questions. Several factors not considered here,
the intermediate-spin state, the long-range Coulomb interac-
tion, the lattice volume depending on the spin states, and
others, are required to answer these questions.
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